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A Model with Simultaneous First and Second Order
Phase Transitions
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We introduce a two dimensional nonlinear XY model with a second order phase
transition driven by spin waves, together with a first order phase transition in the
bond variables between two “bond ordered phases”, one with local ferromagnetic order
and another with local anti-ferromagnetic order. We also prove that at the transition
temperature the bond-ordered phases coexist with a disordered phase as predicted by
Domany, Schick and Swendsen [1]. This last result generalizes the result of van Enter
and Shlosman [2]. We argue that these phenomena are quite general and should occur
for a large class of potentials.
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1. INTRODUCTION AND MAIN RESULT

A usual feature in Statistical Mechanics is the coexistence of several phases
at low temperature. Typically, the number of coexisting pure phases decreases
with increasing temperature up to some critical temperature 8, at which a single
disordered phase appears. The g-state Potts model for sufficiently large ¢ behaves
slightly differently since it has g ordered phases below the transition temperature,
but at the transition it has ¢ 4 1 phases, including a disordered phase [4, 5]. Thus,
the Potts model demonstrates that order and disorder can coexist.

There is a continued interest in exploring the variety of ordering phenomena
occurring in models of classical continuous XY spins [6, 8, 7]. In the present work,
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one of our motivations was to look for the coexistence of ordered and disordered
phases in such models with a continuous symmetry as opposed to the previously
studied Potts model, which is a discrete spin model.

An interesting situation of coexisting order and disorder was found to occur
in a strongly non-linear XY model [1, 9]. For that model it was recently proved
rigorously by van Enter and Shlosman in Ref. [2] that there is some temperature
at which a first order phase transition occurs between a (ferromagnetic) bond
ordered phase, which means that the nearest neighbors are close, and a bond
disordered phase, which means that the nearest neighbors are uncorrelated. This
behavior resembles the two-dimensional Potts model with a magnetic field, which
shows a unique ordered phase at low temperature, and two coexisting phases
at the transition. The main difference is that the XY model has a continuous
symmetry (O(2)), as opposed to Potts model where the symmetry is discrete. This
continuous symmetry cannot be spontaneously broken by the Mermin-Wagner
Theorem, which implies any long-range order is not accompanied by a non-
vanishing magnetization. In dimensions greater than two, the results by van Enter
and Shlosman [2, 3] imply coexistence of the (infinitely many) ordered phases
with a disordered phase as well.

In this paper we introduce a new family of O(2)-models defined on the two-
dimensional square lattice, some of which exhibit a second order phase transition
at sufficiently low temperature that coexists with a first-order phase transition. By a
first-order transition we simply mean the coexistence of different Gibbs measures,
e.g., an ordered and a disordered phase coexist at the transition temperature. A
second-order phase transition is characterized by a diverging susceptibility at
the transition, which is equivalent to non-summable correlations for a suitable
observable.

Our family of models depends on five parameters: three positive integers,
p, m, and n, and two non-negative coupling constants, J, and K:

m 2p n
H= —2J§ [cos e —op]| " - & [% cosSpi—¢) (D)
L] L,

where ¢; € [0, 27), and [., .] denotes nearest neighbors and [[., .]] denotes diago-
nal neighbors. The model considered in Refs [1] and [2] is the special case K = 0
and m = 1. In [3] van Enter and Shlosman also treated the case K = 0 and m = 2.
As we will only consider K > 0 here, we can fix K by rescaling the temperature;
we pick K = 1/4.

We prove that, for suitable values of the parameters, these models have both
a first and a second order phase transition. Our main result is the following theo-
rem, in which we demonstrate the occurrence of both phase transitions by means
of estimates on on nearest neighbor and long range correlations. The correla-
tion functions with specified boundary conditions (b.c.) are denoted by (-)*. We
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consider three types of boundary conditions: 1) f, for ferromagnetic, indicating
parallel nearest neighbor spins, 2) a, for antiferromagnetic, which favors antipar-
allel nearest neighbor spins, and 3) d, for disordered, denoting the third phase,
which appears at the transition temperature. More accurately, the superscripts refer
to various equilibrium phases whose existence we can deduce in the standard way
from the behavior of suitable order parameters. See, e.g., [12] for the details of
such an argument.

The precise meaning of the various phases is clarified later when we define
the order parameters.

Theorem. For sufficiently large p, m = 1, and n = 2, the models with Hamilto-
nian (1) have the following properties:

1) There exists an inverse temperature B, and functions €>*(B, p) < 1, and
n®c(B, p) < 1, such that:

a) for B > B, there is a first order phase transition between the bond ferro-
magnetic phase and the bond anti-ferromagnetic phase:

(cos(pi — ) > 1—€/(B. p) @)
(cos(pi — )" < —1+€“(B. p) (3)

for nearest neighbor pairs [i, j].
b) at B; there is a first order phase transition between the bond ordered
ferromagnetic phase, the bond anti-ferromagnetic phase and the disordered

phase:
{cos(pi — @)} > 1—n/(p) (4)
(cos(pi — @) < —1+n“(p) ()
|{cos(pi — )] < n’(p) (6)

1l) At sufficiently low temperature there is a second-order phase transi-
tion to a phase with power law decay of the two point correlation. For
the Gibbs states with free boundary conditions we have the following
bounds:

i
— < leosta — e < ——— )
(14 Ny=7 N

where 8/ > ﬁ and B'(B) — oo when B — oo, C and C' are constants,
and N denotes any site at distance N from the origin.

We interpret our result as follows: two phases coexist at low temperature,
one with a local ferromagnetic order, and one with a local anti-ferromagnetic
order, but at large distance spin waves destroy both the long range ferromagnetic
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order and the long range anti-ferromagnetic order leading to a second order phase
transition at some lower temperature. The choice of free boundary conditions is
for technical reasons. E.g., in [17] only free and periodic boundary conditions
are treated explicitly, and the spin-wave argument for the upperbound we give is
for free boundary conditions, although it could easily be modified. In any case,
the idea is that with free boundary conditions one gets an equal weight mixture
of the ferro- and anitferromagnetic bond ordered phases. Since these are related
by a symmetry, the same decay is found in these two phases. Strictly speaking,
we have not shown that free or periodic boundary conditions at sufficiently low
temperatures lead to yet another phase.

The situation has to be contrasted to the standard two-dimensional rotator
model in two dimensions, which exhibits a second order phase transition at low
temperature, but no first order phase transition [10, 11]. Notice that the Lebowitz
inequalities [13] which were used in Ref. [10] to prove the uniqueness of the
correlation functions in the two dimensional rotator model are not valid in our
model. There are, however, variants of the rotator model such as the Shlosman
rotator model [12] on the square lattice, where the situation is similar to ours
at least for some range of the parameters. In particular, if the interactions are
ferromagnetic one can apply the Ginibre inequalities, as we do in our proof in
Section III, to compare with two decoupled models on the even and odd sub-
lattices, where one knows the result of Frohlich and Spencer [17]. The applica-
bility of the Ginibre inequalities was already noticed by Shlosman in [12], but
that work predates Frohlich and Spencer’s proof of the Kosterlitz-Thouless tran-
sition [17], and therefore the comparison argument could not be made at that
time.

In the next section we describe the different phases of our model more
precisely and introduce associated restricted ensembles used for the proof of the
theorem. The proof itself is given in a separate section.

2. THE BOND-ORDERED PHASES. RESTRICTED ENSEMBLES

We want to prove that below a temperature 8! two ordered phases coexist:
one in which ferromagnetically ordered bonds dominate and another in which
antiferromagnetically ordered bonds dominate. We also want to show that at the
first-order transition temperature, f;, three phases coexist: the two ordered phases
plus a disordered phase. We will give the complete proof of this last statement,
from which it will be then be clear how to prove the first. First, we give some
definitions and describe the ground states of the model.

For the purpose of describing the ground states, a plaquette is called ferro-
magnetic if ¢; = @; for each nearest neighbor bond, [i, ], of the plaquette, and
anti-ferromagnetic if ¢; — ¢; = m for each bond. We will extend these definitions
to finite temperature a couple of paragraphs further down.
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The Hamiltonian H7-1-2} has two families of ground states, each parametrized
by an angle:

o the ferromagnetic ground states, in which all plaquettes are ferromagnetic;
o the antiferromagnetic ground states, which have only antiferromagnetic
plaquettes.

It is not hard to see that these are the only periodic ground states and it is
easy to specify boundary conditions that select one of them.

Next, we define families of configurations that are close to one of the ground
state configurations and that will carry most of the weight of the equilibrium states
for an appropriate range of temperatures. Restricted ensembles and the correspond-
ing partition functions can then be defined by summing over all configurations in
each of these families. For each bond b = [i, j] three characteristic functions are
defined:

if o —gjl <e ®)

- 1
X][gal - @I] = {0 else

ar, 1 _ 1 if |¢i_¢j_n|<6

X'loi — ¢l = {0 else ©)
d _ f af

XM —o;1=1—x[o;i —@;j1— x"[e: — 9] (10)

Here again, and in the sequel, f stands for ferromagentic, a for antiferromagnetic,
and d for disordered.

The specification of the bond is ferromagnetic if x/[.]=1, anti-
ferromagnetic if x*[.] = 1, and disordered if xf[.] = 1. In the figures we will
indicate a ferromagnetic bond by a thick line, an antiferromagnetic bond by a thin
line, and a disordered bond by a zigzag line. The specification of the four bonds of a
plaquette will be denoted by stuv, where s, ¢, u, v € {f, a, d}, and where the bonds
are ordered in clockwise fashion starting from the top horizontal bond. As before,
a ferromagnetic plaquette is one with specification ffff, an antiferromagnetic
plaquette has aaaa, etc. (See Figure 1).

Fig. 1. Three examples of plaquettes. Thick lines denote ferromagnetic bonds (nearly parallel spins),
thin lines denote antiferromagnetic bonds (nearly antiparallel spins) and a zigzag line is used to
denote all other cases, which we call disordered bonds. The first two plaquettes are the ferro and
antiferromagnetic ground state plaquettes and will be labeled ffff and aaaa, respectively. The third
plaquette is neither ferromagnetic, antiferromagnetic, nor disordered and is labeled by the sequence
adaf.
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For a general configuration, we say that y is a precontour if it is is a
maximal connected set of plaquettes that are neither ferromagnetic nor antifer-
romagnetic nor disordered. A precontour is composed of different plaquettes
i.e. plaquettes containing two or three different bonds: either ferromagnetic,
or anti-ferromagnetic or disordered. A precontour can be thick, and different
precontours can have the same support.

The configurations of two plaquettes are called equivalent if the specification
of each plaquette is the same. An equivalent class of configurations in V is a
restricted ensemble.

We define three kinds of restricted ensembles: 1) the restricted ferromagnetic
ensemble R{; built with equivalent ferromagnetic plaquettes in V'; 2) the restricted
antiferromagnetic ensemble RY, built with equivalent antiferromagnetic plaque-
ttes; 3) the restricted disordered ensemble R;‘ﬂ built with equivalent disordered
plaquettes.

There is a one to one correspondence between the restricted ensembles R’,;
and RY,. To see this, consider the decomposition of the lattice into the two standard
sublattices A and B, where the nearest neighbors of each site in B (A) are in A
(B). The, with each ferromagnetic configuration there corresponds an antiferro-
magnetic one obtained by adding 7 to each spin on the sites of A.

The restricted partition functions Ey(f), Ey(a), and Ey(d), are the partition
functions with the configuration sum restricted to R,’;, RY, and R‘,f, respectively.

The one-to-one correspondence between R{; and RY, implies that Ef, = E3f,

A contour T is the set of configurations, which are equivalent to a precontour’s
configuration y. A contour I" is specified by: 1) a geometric support S(I"), which
is a connected set of plaquettes; 2) a family of equivalent configurations defined
on S(I).

3. THE PROOF

Proof of I.a and Lb. The existence of a first order phase transition [4] is a
consequence of the three conditions:

a) both the probability of an ordered plaquette of an antiferromagnetic pla-
quette are small at high temperature,

b) the probability of a disordered plaquette is small at low temperature,

c¢) the probabilities of (large) contours are small at every temperature. The
proof of I.a) and I.b) will be achieved via chess-board estimates, which
require that the Hamiltonian is reflection positive [14, 15, 16]. We expand
the Hamiltonian.

1
H=J - Z Ay cos2m(p; — ;) + 7 Z cos(¢; —¢r) (11)
[i,j1.m=1,2,...p) [[i.k]leV
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Fig. 2. The universal contour U(afaf) obtained from the plaquette specification ] by repeated reflec-
tions.

Here, the 4,, are positive integers. Obviously the Hamiltonian (11) is re-
flection positive with respect to the axis of the lattice. For simplicity we choose
J=1

We prove directly part I.b), because I.a) follows by symmetry. Peierls bounds
via chessboard estimates are obtained using universal contours, which are obtained
from a plaquette configuration stuv, by reflections through the axes of the lattice.
See Figs 2 and 3 for examples of universal contour configurations U (stuv), which
should be thought of as equivalence classes of configurations.

The probability of a plaquette configuration sfuv is given via the following
formula, which follows from successive applications of the Schwartz inequality
[15, 16].

EV[U(S[LW)]:| 1

—~
=

=y

(stuv) >p < |: (7

First we need to prove a lower bound for Ej, which is similar to the one used in

Ref. [2].
"~‘>—1 . VSO1 14CUZJ 12
“V‘[Cﬁ] el '[5‘ (E)H _ﬁ} (12

We briefly recall the argument leading to (12).

[ QVAVAV: _VAVAV SVAVAVZ ]
CNNAANNANNS

Fig. 3. The universal contour U(adaa) obtained from the plaquette specification 2 by repeated reflec-
tions.
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The first term is obtained by integrating over all the configurations such that
lpil < & f foralli € V, the second one by 1ntegrat1ng over all the configurations

over one Neel sublattice which satisfy [¢; — ¢;| > = f for all nearest neighbors.

Secondly we derive an upper bound for the quantities E,[U(stuv)] for
the different restricted ensembles P(D). The proofs of the conditions a) and b)
are straightforward, so we focus on the proof of c¢), which is to prove that the
probabilities of the various plaquettes occurring in contours are small at every
temperature. Let 8y be defined by:

|:pC2(1 B %)][HO[&]

We have to estimate the probability of the contours with different specifica-
tions.

(13)

e Two opposite bonds with x/ = 1 and two opposite bonds with x¢ = 1,
i.e., a plaquette with specification afaf. The universal contour U(afaf) is
built from ferromagnetic vertical and horizontal bonds with even coordi-
nates, and from anti-ferromagnetic vertical and horizontal bonds with odd
coordinates as shown in Fig 2. We get the upper bound for E,[U(afaf)]
by noticing that the energies of the diagonal potentials are zero:

14l
2y [Ulafaf)] < [ 1[} exp 61V [2+0($2>]

a) We get for 8 > By:

()
uV[U<afaf)]}'V

=

=
[ﬁ]mexpmm [2+0 %)]
[2] ewpriG-o (L) +[1-%]"

1 1
< exp—p {5 - 0(—)}

IA

C2

S[C;ﬁ}[w(c‘z)]x[“rg} "

2=
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b) For 8 < By we obtain:

(o) < cJp [1—2—‘;]]
(4-o[]) G
sl

In both cases the expectations can be made small for p large enough
compared to C. It is obvious that the upper bounds for the expressions of
(O) computed at low and at high temperature have the same dependence
on C and p. This holds in general and therefore we will compute only one
case for the other specifications.

® One disordered bond and three ordered bonds. The nature of the ordered
bonds, f or a, produces only minor changes. Therefore, let us focus on
one example, say the universal contour U(adaa) which is constructed
from ordered horizontal bonds and even vertical bonds, and from disor-
dered vertical odd bonds, as shown in Figure 3. For the upper bound for
Ey[U(adaa)], we notice that the energy of the odd vertical bonds is zero:

1 ™ 1
2/ [U(adaa)] = [C—ﬁ} exp IV [2 ‘o (E)} ,

which leads to the upper bound:

T

e Two opposite disordered bonds and two opposite ordered bonds. The uni-
versal contour U(adad) is built from ordered horizontal bonds, and from
disordered vertical bonds as shown in Figure 4. We get the upper bound
for the Ey[U(adad)] by noticing that the energy of the vertical bonds is

Fig. 4. The universal contour U(adad) obtained from the plaquette specification £ by repeated reflec-
tions.
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S rrdoniond

Fig. 5. The universal contour U(aadd) obtained from the plaquette specification .l by repeated reflec-
tions.

Zero:
1 7V 3 1
We get the upper bound:
1 G-ol&)) ac s
— 14+ — 17
<§>5[Cﬁ] X[ +ﬁ} “

e Two adjacent disordered bonds and two adjacent ordered bonds. The uni-
versal contour U(aadd) is built from ordered horizontal even bonds and
even vertical bonds, and from disordered vertical odd and the horizontal
bonds as shown in Fig. 5. We get the upper bound for Ey[U(aadd)] the
restricted partition function by noticing that the energy of the odd vertical
and horizontal bonds are zero, and that there are entropy contributions
from the vertices with odd coordinates:

N 3 1
£y [U(aadd)] < [C_ﬁ] exp[B|V| [5 +0 (E)} (18)

We get the upper bound:
<[]
~Levp N

e Three disordered bonds and one ordered bonds. The universal contour
U(dadd)isbuilt from disordered horizontal bonds and even vertical bonds,
and from ordered vertical odd bonds as shown in Fig. 6. We get the upper
bound for B [U(dadd)] by noticing that the energy of the horizontal and
the odd vertical and bonds is zero, and that there are entropy contributions
from the vertices with even ordinates:

kL 1
2/ [U(dadd)] < [c_ﬁ} exp A1 V| [1 +0 <E)] (20)
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Fig. 6. The universal contour U(dadd) obtained from the plaquette specification . by repeated reflec-
tions.

We get the upper bound:
(z) < |:—1 ]<110_0[C12]) X |:1 + £:|130 (21)
~Levr Nz

For p > C > 1, the probability of each specification of a contour’s plaquette
can be made small enough. Finally we prove the Peierls condition: first we sum
over all the specifications of the contours with a fixed support using the estimates
(14), (15), (17), (19), and (21); next we use the Koenigsberg’s lemma to get an
upper bound on the entropy for the contours. This concludes our proof of part I of
the Theorem.

Proof of IT) The upper bound on the two-point correlation function is proved via a
spin wave argument, the lower bound is deduced from the deep result of Frohlich
and Spencer for the two dimensional classical XY model [17]. We now provide
the details.

I1.a) The lower bound
We use the Ginibre inequalities [ 18], which are valid for ferromagnetic Hamil-
tonians.

(cos(mi[@; — ¢;1) x cos(malgr — @)
> (cos(mi[g; — ;D) (cos(malpr — @) (22)

We first start by removing all the terms contained in the Hamiltonian with the
exception of the diagonal interactions, then we are left with two independent
rotator models, one on each of the sublattices.

First, suppose i and j are on the same sublattice. Then we use the re-
maining interactions on that sublattice. We are left with the Hamiltonian:

H{} = Z{[[i,k]]eV} cos([¢r — ¢:]), and we have

(cos(go — on )Y = (cos(wo — o)
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Next we apply the result of Frohlich and Spencer [17], Theorem C, for the two
dimensional rotator model to get a lower bound.

» C
(cos(go — o)) > ————
(1 + N)=7

(23)
where ' > % and B'(8) — oo when 8 — 0.

If i and j belong to different sublattices, the same lower bound of (23) but
with a slightly smaller constant C, holds for the absolute value of the expectation,
again by using the Ginibre inequality (22) with j =/ and & and j replaced by a
nearest neighbor of ;.

Here we see how the low-temperature behavior of a three-dimensional ver-
sion of our model, e.g., on a cubic lattice with nearest-neighbor and plaquette-
diagonal interactions would differ from the two-dimensional case we are study-
ing here. Ginibre inequalities could be used to prove existence of ferromagnetic
and anti-ferromagnetic long-range order by comparison with the standard three-
dimensional X'Y-model [14].

I1.b) The upper bound. For the upper bound for the two-point correlation function
we could adapt the argument of McBryan and Spencer [21], but for variety we
will instead give a very nice (but less general) argument that we learned from H.
Kunz[19]. The argument starts by defining a sequence of squares (or hypercubes
in higher dimensions) and label them B, B, ..., as shown in Fig. 7. Each B, is
centered at the origin and its boundaries can be taken to intersect nearest neighbor
bonds. We define the shells C; = B;y; \ B, eachshell C; contains a square R; ofthe
lattice, the nearest vertices contained in R; are labeled by a couple [/, i(/)], where
i(!) denotes the coordinates along R;. We want to identify the continuous spins
contained in each shell R; by using Ginibre’s inequality (22). To do so, we add to the
Hamiltonian Hy the ferromagnetic interactions: Zfzf/ Zi(l) Ji cos(@it10) — Qi)
where the J; is are positive. The correlations are increasing by Ginibre’s inequality.
Next we let J; = 00, the correlations are again increasing:

» 1 2 2 J=N
(cos(pg — §0N)>I(j = e X / dop -- / dow+ l_[ exp |:4j.] Z A,
L 0 0

j=1 m=1,2,...p

1 .
x cos2m(p; — @;1) + 3 cos(p; — ‘Pj+l):| expli(p; — ¢j+1)

where Z{" is the normalization factor. The LHS is the two-point correlation func-
tion corresponding to a one-dimensional model, each term of the product can be
computed, we get the following upper bound:

(cos(po — o))" < N1/ Cee{2s+1})
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Fig. 7. The nested square boxes B; used in the argument for the upper bound ILb. are shown
in dashed lines. The solid bonds are the new strongly ferromagnetic interactions introduced in
the proof.

4. CONCLUSION

The coexistence between second order and first order phase transitions at
the same temperature should be a fairly general phenomenon in two-dimensional
models with a continuous symmetry. For example it occurs in several non linear
two dimensional XY models defined by (1) for other values of the pair m, n. In a
more general setting, we have to consider potentials with continuous symmetry,
which are peaked and with large flat parts to produce entropy. The problem will be
to characterize the criticality, which in our case uses [17], a generalization of the
work of Aizenman could be an alternative [20]. We expect that the same situation
should hold for some quantum models.
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